😇
牛牛的安全 Odin
  • 个人介绍
  • 数据安全
  • 工控安全
    • 工控概念
  • 车联网安全合规
    • R155
    • CSMS\VTA
    • GDPR认证
  • 车联网安全
    • 漏洞订阅
    • 汽车攻击时间轴
    • 汽车信息安全研究
      • 车厂安全需求 Custom Requirement
      • 安全威胁
      • 参考文章
      • Who’s Behind the Wheel?
      • 安全研究基础
      • 智能网联汽车安全渗透指标
      • 智能网联汽车软件安全测试关键技术研究
      • 基于硬件在环的整车控制器功能安全测试技术研究
      • 智能网联汽车信息安全解决方案
      • 自动驾驶汽车的安全性-识别挑战
    • ECU逆向案例
      • 特斯拉攻击链
      • 汽车动力系统ECU固件逆向工程初探
  • 物联网安全
    • IoT 技术和协议
    • 智能设备常规测试思路总结
    • 各种调试接口(SWD、JTAG、Jlink、Ulink、STlink)的区别
    • QEMU 系统仿真
      • 如何“用 QEMU 模拟它”
      • 处理加密的路由器固件
    • 自动分析Automated Approach
    • IOT渗透测试(一)
    • 物联网安全目录
  • 固件分析案例
    • 智能门锁、手环
      • MCU固件反汇编
      • 云丁鹿客门锁中bootloader和FreeRTOS的分析
      • 云丁鹿客门锁BLE通信的分析(下)
      • 云丁鹿客门锁BLE通信的分析(中)
      • 云丁鹿客门锁BLE通信的分析(上)
      • 华为智联旗下小豚AI摄像头的完整分析(下)
      • 华为智联旗下小豚AI摄像头的完整分析(上)
      • 海康萤石智能门锁的网关分析(4)
      • 海康萤石智能门锁的网关分析(3)
      • 海康萤石智能门锁的网关分析(2)
      • 海康萤石智能门锁的网关分析(1)
      • idapython编写和调试
      • 果加智能门锁的全面分析(下)
      • 果加智能门锁的全面分析(中)
      • 果加智能门锁的全面分析(上)
      • BLE智能手环
      • 耶鲁智能门锁的简单测试(下)
      • 耶鲁智能门锁的简单测试(上)
      • 耶鲁门锁漏洞
      • 对一款BLE灯泡的分析
      • BLE协议栈与Android BLE接口简介
    • 在IoT设备中查找端口对应进程的四种方法
    • 路由器命令执行
    • 对基于Philips TriMedia CPU的网络摄像机进行逆向工程
    • 从Microsoft Band以及 Hello Sense 设备中提取自己的历史数据
    • CVE-2021-22909- 深入研究 UBIQUITI 固件更新错误
    • 复现|摄像头固件重打包
    • Dlink_DWR-932B路由器固件分析
    • 针对小米九号平衡车的无接触式攻击
    • 记一次智能印章设备的漏洞挖掘
  • APP 逆向
    • Go二进制文件逆向分析从基础到进阶——综述
    • Switch APP逆向分析
  • 传统静态代码分析
    • 静态分析案例
      • ELF恶意软件的静态分析原理和方法(上)
      • ELF恶意软件的静态分析原理和方法(下)
    • 静态代码分析工具清单
    • 企业级静态代码分析工具清单
  • 应用安全测试
    • DAST、SAST、IAST
    • IAST 工具初探
  • 芯片架构
    • ARM指令集概念
    • ARM指令集
    • 冯·诺伊曼结构
    • 指令集
    • 处理器架构、指令集和汇编语言,三者有何关系?
  • 病毒分析
    • 熊猫烧香
  • 编程知识
    • REST API 教程
  • 流量分析工具
    • 卡巴斯基开源的智能手机流量劫持工具
    • 利用 Burp Suite 劫持 Android App 的流量(二)
    • 利用 Burp Suite 劫持 Android App 的流量(一)
  • 区块链安全
    • 安全多方计算
    • Chainalysis 团队从区块链的角度分析发现 2020 年最大的 4 起勒索软件攻击实现存在关联
  • 攻击案例
    • 特斯拉Powerwall网关可能受到黑客攻击
  • 移动应用
    • Mac上使用Charles抓包
    • 手机抓包工具汇总
    • APP渗透测试流程和技巧大全
    • 加壳和脱壳
    • 浅谈 Android Dex 文件
    • 移动应用漏洞分析样例分享
    • 移动应用常见漏洞分析
    • 移动应用漏洞分析工具介绍
    • 渗透测试流程详解 及 移动APP安全测试要点
    • Frida Android hook
  • 安全设计
    • 【软件安全设计】安全开发生命周期(SDL)
Powered by GitBook
On this page
  1. 芯片架构

处理器架构、指令集和汇编语言,三者有何关系?

Previous指令集Next病毒分析

Last updated 3 years ago

先简短回答:

  1. 处理器架构就是处理器的硬件架构,称为微架构。是一堆硬件电路,去实现指令集所规定的操作运算。

  2. 是的,指令集决定了处理器的架构,因为处理器架构就是用硬件电路实现指令集。但是具体用什么样的处理器架构,设计怎样的硬件电路,每个人设计的都可以不一样。

  3. MIPS是一种采取(RISC)的架构,既有指令集,也有相应的处理器架构。大名鼎鼎的龙芯就是MIPS的。

  4. 汇编语言是用人类看得懂的语言来描述指令集。否则指令集的机器码都是一堆二进制数字,人类读起来非常麻烦,但汇编是用类似人类语言的方式描述指令集,读起来方便多了。

要设计处理器,首先就需要有指令集,规定处理器相应操作,通过指令集去控制处理器实现相应功能。但处理器是一堆硬件电路,只能识别二进制数据,所以指令集是由一堆二进制数据组成。而二进制数据对人类来说读起来很麻烦。为了方便人类操作指令集,发明了汇编语言来描述指令集。汇编语言类似人类语言,读起来方便多了。

虽然汇编语言读起来方便了,但也有缺陷。首先汇编语言操作起来还是挺麻烦的。其次汇编语言对应一条条指令集,所以当指令集改变时,就得修改相应汇编语言,导致其可移植性很差,不能跨平台使用,如ARM的汇编语言与Intel X86的就不同。这时人们就想开发一种更方便操作,超越指令集的语言,于是有了C,C++等高级语言。

但处理器只能识别二进制码,那怎么能识别高级语言呢?于是人们开发了编译器,依照如下顺序,将高级语言翻译成二进制码: 高级语言 汇编语言 二进制机器码。 至此,人类可以很方便的利用高级语言编写程序,控制处理器完成相应功能。然后程序员这个红火的职业就此大规模诞生了。

精简指令集
处理器
[公式]
[公式]